Speeding up Permutation Testing in Neuroimaging
ثبت نشده
چکیده
Multiple hypothesis testing is a significant problem in nearly all neuroimaging studies. In order to correct for this phenomena, we require a reliable estimate of the Family-Wise Error Rate (FWER). The well known Bonferroni correction method, while being simple to implement, is quite conservative, and can substantially under-power a study because it ignores dependencies between test statistics. Permutation testing, on the other hand, is an exact, non-parametric method of estimating the FWER for a given α-threshold, but for acceptably low thresholds the computational burden can be prohibitive. In this paper, we observe that permutation testing in fact amounts to populating the columns of a very large matrix P. By analyzing the spectrum of this matrix, under certain conditions, we see that P has a low-rank plus a low-variance residual decomposition which makes it suitable for highly sub–sampled — on the order of 0.5% — matrix completion methods. Thus, we propose a novel permutation testing methodology which offers a large speedup, without sacrificing the fidelity of the estimated FWER. Our evaluations on four different neuroimaging datasets show that a computational speedup factor of roughly 50× can be achieved while recovering the FWER distribution up to very high accuracy. Further, we show that the estimated α-threshold is also recovered faithfully, and is stable.
منابع مشابه
Speeding up Permutation Testing in Neuroimaging
Multiple hypothesis testing is a significant problem in nearly all neuroimaging studies. In order to correct for this phenomena, we require a reliable estimate of the Family-Wise Error Rate (FWER). The well known Bonferroni correction method, while simple to implement, is quite conservative, and can substantially under-power a study because it ignores dependencies between test statistics. Permu...
متن کاملNonparametric permutation tests for functional neuroimaging: a primer with examples.
Requiring only minimal assumptions for validity, nonparametric permutation testing provides a flexible and intuitive methodology for the statistical analysis of data from functional neuroimaging experiments, at some computational expense. Introduced into the functional neuroimaging literature by Holmes et al. ([1996]: J Cereb Blood Flow Metab 16:7-22), the permutation approach readily accounts ...
متن کاملControlling the familywise error rate in functional neuroimaging: a comparative review.
Functional neuroimaging data embodies a massive multiple testing problem, where 100,000 correlated test statistics must be assessed. The familywise error rate, the chance of any false positives is the standard measure of Type I errors in multiple testing. In this paper we review and evaluate three approaches to thresholding images of test statistics: Bonferroni, random field and the permutation...
متن کاملPermutation tests for factorially designed neuroimaging experiments.
Permutation methods for analysis of functional neuroimaging data acquired as factorially designed experiments are described and validated. The F ratio was estimated for main effects and interactions at each voxel in standard space. Critical values corresponding to probability thresholds were derived from a null distribution sampled by appropriate permutation of observations. Spatially informed,...
متن کاملThe False Discovery Rate in Simultaneous Fisher and Adjusted Permutation Hypothesis Testing on Microarray Data
Background and Objectives: In recent years, new technologies have led to produce a large amount of data and in the field of biology, microarray technology has also dramatically developed. Meanwhile, the Fisher test is used to compare the control group with two or more experimental groups and also to detect the differentially expressed genes. In this study, the false discovery rate was investiga...
متن کامل